Generator pair(key/address) altcoins for any wallet
Comodo SSL

CRYPTOGRAPHY AND MATHEMATICAL VISUALIZATIONS

Based on a protocol Bitcoin and language programming C#

  
    I was inspired to create this video by the Penrose Tile and fifth-order symmetry =)
    
        int vertexes = 5; // Number of vertices
        PointF center = new PointF(300.0f, 300.0f); // Coordinates of the center of the circle
        float radius = 100; // Radius
        float angle = (float)Math.PI * 2 / 5;//Angle

    private void draw_polygon(float _center_X, float _center_Y, float k_x, float k_y, Pen silverPen4, float radius,  double angle_k)
        {
            using (var g = Graphics.FromImage(bmp))
            {
                PointF[] p = new PointF[vertexes];
                PointF center = new PointF(_center_X + radius * k_x, _center_Y + radius * k_y); // Coordinates of the center of the circle
                for (int i = 0; i < vertexes; i++)
                {
                    p[i] = new PointF(center.X + (float)Math.Sin(i * angle + angle_k) * radius, center.Y + (float)Math.Cos(i * angle + angle_k) * radius);
                }
                for (int i = 0; i < vertexes; i++)
                {
                    g.DrawPolygon(silverPen4, p);
                }
            }
        }
in accordance with the dependent coordinates of the center in the proportions of magnification by means of coefficients Here is a straight and inverted pentagon:
 
        private void draw_polygons(PointF _center, Pen silverPen4, float radius) 
        {
            float a1 = 2 * (float)Math.Cos(Math.PI / 5);
            float a2 = a1 * (float)Math.Cos(Math.PI / 10);
            float a3 = a1 * (float)Math.Cos(4 * Math.PI / 5 - Math.PI / 2);
            float a4 = a1 * (float)Math.Sin(4 * Math.PI / 5 - Math.PI / 2);
            draw_polygon(_center.X, _center.Y,  0.0f, 0.0f, silverPen4, radius,  -Math.PI / 5);
            draw_polygon(_center.X, _center.Y,  a3, -a4, silverPen4, radius, 0.0);
            draw_polygon(_center.X, _center.Y,  -a3, -a4, silverPen4, radius,  0.0);
            draw_polygon(_center.X, _center.Y,  -a2, 0.5f, silverPen4, radius,  0.0);
            draw_polygon(_center.X, _center.Y,  a2, 0.5f, silverPen4, radius,  0.0);
            draw_polygon(_center.X, _center.Y,  0.0f, a1, silverPen4, radius, 0.0);
        }
        private void draw_polygons_i(PointF _center, Pen silverPen4, float radius)
        {
            float a1 = 2 * (float)Math.Cos(Math.PI / 5);
            float a2 = a1 * (float)Math.Cos(Math.PI / 10);
            float a3 = a1 * (float)Math.Cos(4 * Math.PI / 5 - Math.PI / 2);
            float a4 = a1 * (float)Math.Sin(4 * Math.PI / 5 - Math.PI / 2);
            draw_polygon(_center.X, _center.Y,  0.0f, 0.0f, silverPen4, radius,  0.0);
            draw_polygon(_center.X, _center.Y,  0.0f, -a1, silverPen4, radius,  -Math.PI / 5);
            draw_polygon(_center.X, _center.Y,  a2, -0.5f, silverPen4, radius,  -Math.PI / 5);
            draw_polygon(_center.X, _center.Y,  -a2, -0.5f, silverPen4, radius, -Math.PI / 5);
            draw_polygon(_center.X, _center.Y,  a3, a4, silverPen4, radius,  -Math.PI / 5);
            draw_polygon(_center.X, _center.Y,  -a3, a4, silverPen4, radius,  -Math.PI / 5);
        }
Continuation of further calculation of new center coordinates with new coefficients and the compilation of even larger pentagons: an example of new coefficients:
           float a01 = radius * (2 * a1 + 1) * (float)Math.Cos(Math.PI / 10);
            float a02 = radius * (2 * a1 + 1) * (float)Math.Sin(Math.PI / 10);
            float a03 = radius * (2 * a1 + 1) * (float)Math.Sin(Math.PI / 5);
            float a04 = radius * (2 * a1 + 1) * (float)Math.Cos(Math.PI / 5);
            float a05 = 0.0f;
            float a06 = radius * (2 * a1 + 1);
You can continue by calculating the coefficients according to the Fibonacci sequence or in a similar way:
 int s = 0; int n = 1; int p = 1;
            for (int i = 0; i < 4; i++)
            {
                s = n + p;
                float a_1_ = radius * (s * a1 + p) * (float)Math.Cos(Math.PI / 5);
                float a_2_ = radius * (s * a1 + p) * (float)Math.Sin(Math.PI / 5);
                float a_5_ = radius * (s * a1 + p);
                float a_3_ = radius * (s * a1 + p) * (float)Math.Cos(Math.PI / 10);
                float a_4_ = radius * (s * a1 + p) * (float)Math.Sin(Math.PI / 10);
                float a_6_ = 0.0f;
            
                n = p;
                p = s;
            }
By changing the coordinate coefficients of the centers and the radiuses of the pentagons over time, i got this video (above)
Events
  • 30 September - 30 September

    Club

    Time: 10:50

    -

  • 29 September - 29 September

    Conference

    Theories

    Time: 18:00

5-th order symmetry
September 28th, 2021
5-th order symmetry
Visualisation & C# code
Normal distribution
September 16th, 2021
Normal distribution
Visualisation & C# code
Seminar
December 19th, 2021
in development
in development
December 19th, 2021
December 19th, 2021
in development
in development
Seminar
December 19th, 2021
in development
in development
Seminar
December 19th, 2021
in development
in development
© 2022 - AltCoins - admin@fractal-coin.net